Philosophy: AGISystem2 is designed to complement LLMs, not replace them. LLMs excel at natural language understanding and generation; AGISystem2 provides verifiable, traceable reasoning. Together, they offer the best of both worlds.

1. Integration Architecture

┌─────────────────────────────────────────────────────────────────┐
│                         User Query                               │
│                    (Natural Language)                            │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                      LLM (Claude, GPT, etc.)                     │
│                                                                  │
│  1. Parse intent                                                 │
│  2. Extract entities and relationships                           │
│  3. Generate structured query                                    │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                        AGISystem2                                │
│                                                                  │
│  1. Formal reasoning over knowledge base                         │
│  2. Generate proof chain                                         │
│  3. Return structured result + explanation                       │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                      LLM (Response Generation)                   │
│                                                                  │
│  1. Format proof as natural language                             │
│  2. Add context and caveats                                      │
│  3. Generate user-friendly response                              │
└─────────────────────────────────────────────────────────────────┘

2. Integration Patterns

2.1 Pattern A: LLM as NL Frontend

Use the LLM to translate complex natural language into AGISystem2 DSL:

// Prompt for LLM
const prompt = `
Convert this natural language to AGISystem2 DSL:

User: "Is a penguin a bird that can fly?"

Rules:
- Use isA for type relationships
- Use hasProperty for attributes
- Use And for conjunctions
- Variables start with ?

Output only valid DSL.
`;

// LLM returns:
// @c1 isA Penguin Bird
// @c2 hasProperty Penguin can_fly
// And $c1 $c2

// Execute in AGISystem2
const result = session.query(llmOutput);
// Returns: { success: false, reason: "Penguins cannot fly" }

2.2 Pattern B: Verification Layer

Use AGISystem2 to verify LLM claims:

// LLM generates a claim
const llmClaim = "Marie Curie won the Nobel Prize in Physics";

// Translate to DSL
const { dsl } = translateContextWithGrammar(llmClaim);

// Verify against knowledge base
const verification = session.query(dsl);

if (verification.success) {
  console.log("Verified with proof:", verification.proof);
} else {
  console.log("Could not verify. Checking for contradictions...");
  const contradiction = session.query(`Not (${dsl})`);
  if (contradiction.success) {
    console.log("CONTRADICTION DETECTED");
  }
}

2.3 Pattern C: Explainable Reasoning

Use AGISystem2 for reasoning, LLM for explanation:

// AGISystem2 provides proof
const result = session.query('isA Penguin Animal');

// Proof chain:
// 1. isA Penguin Bird (fact)
// 2. isA Bird Animal (rule)
// 3. Therefore: isA Penguin Animal (transitive)

// Ask LLM to explain
const explanationPrompt = `
Explain this reasoning chain in simple terms:
${JSON.stringify(result.proof)}

User question: "Why is a penguin an animal?"
`;

// LLM generates:
// "A penguin is an animal because penguins are birds,
//  and all birds are animals. This follows from the
//  biological classification hierarchy."

3. Example: RAG with Verified Reasoning

Use Case: Retrieval-Augmented Generation (RAG) where retrieved facts are verified through formal reasoning before being used in the response.
import { Session } from './src/session.mjs';
import { translateContextWithGrammar } from './src/nlp/nl2dsl/grammar.mjs';

async function verifiedRAG(userQuery, llmClient) {
  // Step 1: LLM extracts intent and entities
  const extraction = await llmClient.complete({
    prompt: `Extract the logical query from: "${userQuery}"`
  });

  // Step 2: Retrieve relevant documents
  const docs = await retrieveDocuments(extraction.entities);

  // Step 3: Load documents into AGISystem2
  const session = new Session();
  for (const doc of docs) {
    const { dsl, errors } = translateContextWithGrammar(doc.text);
    if (errors.length === 0) {
      for (const line of dsl.split('\n')) {
        session.learn(line);
      }
    }
  }

  // Step 4: Reason over the knowledge
  const { dsl: queryDsl } = translateContextWithGrammar(extraction.query);
  const result = session.query(queryDsl);

  // Step 5: Generate response with verified facts
  const response = await llmClient.complete({
    prompt: `
      User question: ${userQuery}

      Verified facts (with proof):
      ${JSON.stringify(result)}

      Generate a response using only verified information.
      If something couldn't be verified, say so explicitly.
    `
  });

  return {
    answer: response.text,
    verified: result.success,
    proof: result.proof
  };
}

4. API Integration

4.1 REST API Wrapper

import express from 'express';
import { Session } from './src/session.mjs';

const app = express();
const sessions = new Map();

app.post('/session/:id/learn', (req, res) => {
  const session = sessions.get(req.params.id) || new Session();
  sessions.set(req.params.id, session);

  const { dsl } = req.body;
  session.learn(dsl);
  res.json({ success: true });
});

app.post('/session/:id/query', (req, res) => {
  const session = sessions.get(req.params.id);
  if (!session) return res.status(404).json({ error: 'Session not found' });

  const result = session.query(req.body.query);
  res.json(result);
});

app.listen(3000);

4.2 Tool Use with Claude

// Define AGISystem2 as a tool for Claude
const tools = [{
  name: "reason",
  description: "Perform formal logical reasoning over a knowledge base",
  input_schema: {
    type: "object",
    properties: {
      context: { type: "string", description: "Facts and rules in natural language" },
      query: { type: "string", description: "Question to answer" }
    }
  }
}];

// Claude can now call:
// reason({ context: "All cats are mammals. Tom is a cat.", query: "Is Tom a mammal?" })
// Returns: { success: true, proof: [...] }

5. Best Practices

Do Don't
Use LLM for NL understanding Use LLM for logical reasoning
Verify LLM claims with AGISystem2 Trust LLM outputs blindly
Return proofs with answers Hide reasoning steps
Handle translation errors gracefully Assume all NL translates perfectly
Use sessions for isolated contexts Share state across unrelated queries

6. Limitations

Current Limitations:

7. Example Prompts for LLMs

7.1 NL to DSL Translation

`You are a translator from natural language to AGISystem2 DSL.

DSL Syntax:
- isA Subject Type (e.g., isA Tom Cat)
- hasProperty Subject Property (e.g., hasProperty Ball red)
- operator Subject Object (e.g., loves John Mary)
- @ref statement (named reference)
- Implies $antecedent $consequent (rules)
- And $a $b (conjunction)
- Not (statement) (negation)
- Variables: ?x, ?y (for rules)

Input: "${userInput}"

Output only valid DSL, one statement per line.`

7.2 Proof Explanation

`Explain this formal proof in simple, accessible language:

Proof:
${JSON.stringify(proof, null, 2)}

User's original question: "${question}"

Requirements:
- Use everyday language
- Explain each step
- Highlight key inferences
- Note any assumptions`